Close Menu
AsiaTokenFundAsiaTokenFund
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
What's Hot

Which Meme Coin Triumphs in 2025? Dogecoin, PEPE or Neo Pepe Coin ($NEOP) For Best Crypto

July 1, 2025

BBB Warns of AI Voice Scams Just as Graphite Network Launches Phonebook MVP That Offers a Web3 Fix

July 1, 2025

Beeline Strengthens Balance Sheet in June with $6.5M Capital Raise and Major Debt Reduction

July 1, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) YouTube LinkedIn
AsiaTokenFundAsiaTokenFund
ATF Capital
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
AsiaTokenFundAsiaTokenFund

Building Real-Time Language Translation with AssemblyAI and DeepL in JavaScript

0
By Aggregated - see source on July 14, 2024 Blockchain
Share
Facebook Twitter LinkedIn Pinterest Email


Ted Hisokawa
Jul 14, 2024 05:20

Learn how to create a real-time language translation service using AssemblyAI and DeepL in JavaScript. Step-by-step guide for developers.





In a comprehensive tutorial, AssemblyAI offers insights into creating a real-time language translation service using JavaScript. The tutorial leverages AssemblyAI for real-time speech-to-text transcription and DeepL for translating the transcribed text into various languages.

Introduction to Real-Time Translation

Translations play a critical role in communication and accessibility across different languages. For instance, a tourist in a foreign country may struggle to communicate if they don’t understand the local language. AssemblyAI’s Streaming Speech-to-Text service can transcribe speech in real-time, which can then be translated using DeepL, making communication seamless.

Setting Up the Project

The tutorial begins with setting up a Node.js project. Essential dependencies are installed, including Express.js for creating a simple server, dotenv for managing environment variables, and the official libraries for AssemblyAI and DeepL.

mkdir real-time-translation
cd real-time-translation
npm init -y
npm install express dotenv assemblyai deepl-node

API keys for AssemblyAI and DeepL are stored in a .env file to keep them secure and avoid exposing them in the frontend.

Creating the Backend

The backend is designed to keep API keys secure and generate temporary tokens for secure communication with the AssemblyAI and DeepL APIs. Routes are defined to serve the frontend and handle token generation and text translation.

const express = require("express");
const deepl = require("deepl-node");
const { AssemblyAI } = require("assemblyai");
require("dotenv").config();

const app = express();
const port = 3000;

app.use(express.static("public"));
app.use(express.json());

app.get("https://blockchain.news/", (req, res) => {
  res.sendFile(__dirname + "/public/index.html");
});

app.get("/token", async (req, res) => {
  const token = await client.realtime.createTemporaryToken({ expires_in: 300 });
  res.json({ token });
});

app.post("/translate", async (req, res) => {
  const { text, target_lang } = req.body;
  const translation = await translator.translateText(text, "en", target_lang);
  res.json({ translation });
});

app.listen(port, () => {
  console.log(`Listening on port ${port}`);
});

Frontend Development

The frontend consists of an HTML page with text areas for displaying the transcription and translation, and a button to start and stop recording. The AssemblyAI SDK and RecordRTC library are utilized for real-time audio recording and transcription.

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="UTF-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>Voice Recorder with Transcription</title>
    <script src="https://cdn.tailwindcss.com"></script>
  </head>
  <body>
    <div class="min-h-screen flex flex-col items-center justify-center bg-gray-100 p-4">
      <div class="w-full max-w-6xl bg-white shadow-md rounded-lg p-4 flex flex-col md:flex-row space-y-4 md:space-y-0 md:space-x-4">
        <div class="flex-1">
          <label for="transcript" class="block text-sm font-medium text-gray-700">Transcript</label>
          <textarea id="transcript" rows="20" class="mt-1 block w-full p-2 border border-gray-300 rounded-md shadow-sm"></textarea>
        </div>
        <div class="flex-1">
          <label for="translation" class="block text-sm font-medium text-gray-700">Translation</label>
          <select id="translation-language" class="mt-1 block w-full p-2 border border-gray-300 rounded-md shadow-sm">
            <option value="es">Spanish</option>
            <option value="fr">French</option>
            <option value="de">German</option>
            <option value="zh">Chinese</option>
          </select>
          <textarea id="translation" rows="18" class="mt-1 block w-full p-2 border border-gray-300 rounded-md shadow-sm"></textarea>
        </div>
      </div>
      <button id="record-button" class="mt-4 px-6 py-2 bg-blue-500 text-white rounded-md shadow">Record</button>
    </div>
    <script src="https://www.unpkg.com/assemblyai@latest/dist/assemblyai.umd.min.js"></script>
    <script src="https://www.WebRTC-Experiment.com/RecordRTC.js"></script>
    <script src="main.js"></script>
  </body>
</html>

Real-Time Transcription and Translation

The main.js file handles the audio recording, transcription, and translation. The AssemblyAI real-time transcription service processes the audio, and the DeepL API translates the final transcriptions into the selected language.

const recordBtn = document.getElementById("record-button");
const transcript = document.getElementById("transcript");
const translationLanguage = document.getElementById("translation-language");
const translation = document.getElementById("translation");

let isRecording = false;
let recorder;
let rt;

const run = async () => {
  if (isRecording) {
    if (rt) {
      await rt.close(false);
      rt = null;
    }
    if (recorder) {
      recorder.stopRecording();
      recorder = null;
    }
    recordBtn.innerText = "Record";
    transcript.innerText = "";
    translation.innerText = "";
  } else {
    recordBtn.innerText = "Loading...";
    const response = await fetch("/token");
    const data = await response.json();
    rt = new assemblyai.RealtimeService({ token: data.token });
    const texts = {};
    let translatedText = "";
    rt.on("transcript", async (message) => {
      let msg = "";
      texts[message.audio_start] = message.text;
      const keys = Object.keys(texts);
      keys.sort((a, b) => a - b);
      for (const key of keys) {
        if (texts[key]) {
          msg += ` ${texts[key]}`;
        }
      }
      transcript.innerText = msg;
      if (message.message_type === "FinalTranscript") {
        const response = await fetch("/translate", {
          method: "POST",
          headers: {
            "Content-Type": "application/json",
          },
          body: JSON.stringify({
            text: message.text,
            target_lang: translationLanguage.value,
          }),
        });
        const data = await response.json();
        translatedText += ` ${data.translation.text}`;
        translation.innerText = translatedText;
      }
    });
    rt.on("error", async (error) => {
      console.error(error);
      await rt.close();
    });
    rt.on("close", (event) => {
      console.log(event);
      rt = null;
    });
    await rt.connect();
    navigator.mediaDevices
      .getUserMedia({ audio: true })
      .then((stream) => {
        recorder = new RecordRTC(stream, {
          type: "audio",
          mimeType: "audio/webm;codecs=pcm",
          recorderType: StereoAudioRecorder,
          timeSlice: 250,
          desiredSampRate: 16000,
          numberOfAudioChannels: 1,
          bufferSize: 16384,
          audioBitsPerSecond: 128000,
          ondataavailable: async (blob) => {
            if (rt) {
              rt.sendAudio(await blob.arrayBuffer());
            }
          },
        });
        recorder.startRecording();
        recordBtn.innerText = "Stop Recording";
      })
      .catch((err) => console.error(err));
  }
  isRecording = !isRecording;
};
recordBtn.addEventListener("click", () => {
  run();
});

Conclusion

This tutorial demonstrates how to build a real-time language translation service using AssemblyAI and DeepL in JavaScript. Such a tool can significantly enhance communication and accessibility for users in different linguistic contexts. For more detailed instructions, visit the original AssemblyAI tutorial.

Image source: Shutterstock


Credit: Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

ZachXBT Slams USDC for Enabling North Korean Crime as FATF Issues Stablecoin Warning

July 1, 2025

DOJ Dismantles DPRK-Linked Crypto Theft Scheme

July 1, 2025

Exa Innovates with Multi-Agent Web Research System Using LangGraph

July 1, 2025
Leave A Reply Cancel Reply

What's New Here!

Which Meme Coin Triumphs in 2025? Dogecoin, PEPE or Neo Pepe Coin ($NEOP) For Best Crypto

July 1, 2025

BBB Warns of AI Voice Scams Just as Graphite Network Launches Phonebook MVP That Offers a Web3 Fix

July 1, 2025

Beeline Strengthens Balance Sheet in June with $6.5M Capital Raise and Major Debt Reduction

July 1, 2025

Here’s What Will Happen If The Bitcoin Price Can Manage A Clean Break Above $108,500

July 1, 2025
AsiaTokenFund
Facebook X (Twitter) LinkedIn YouTube
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
© 2025 asiatokenfund.com - All Rights Reserved!

Type above and press Enter to search. Press Esc to cancel.

Ad Blocker Enabled!
Ad Blocker Enabled!
Our website is made possible by displaying online advertisements to our visitors. Please support us by disabling your Ad Blocker.