Close Menu
AsiaTokenFundAsiaTokenFund
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
What's Hot

XRP Price Prediction For May 2025 As Bitcoin Price Hits $105000

May 11, 2025

Pi Network Nears $1: How to Buy and Sell Pi Coins

May 11, 2025

Altcoins And Meme Tokens Dominate Trending Crypto Searches This Week

May 11, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) YouTube LinkedIn
AsiaTokenFundAsiaTokenFund
ATF Capital
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
AsiaTokenFundAsiaTokenFund

IBM Research Unveils Innovations to Accelerate Enterprise AI Training

0
By Aggregated - see source on September 23, 2024 Blockchain
Share
Facebook Twitter LinkedIn Pinterest Email


Zach Anderson
Sep 23, 2024 03:32

IBM Research introduces new data processing techniques to expedite AI model training using CPU resources, significantly enhancing efficiency.





IBM Research has unveiled groundbreaking innovations aimed at scaling the data processing pipeline for enterprise AI training, according to IBM Research. These advancements are designed to expedite the creation of powerful AI models, such as IBM’s Granite models, by leveraging the abundant capacity of CPUs.

Optimizing Data Preparation

Before training AI models, vast amounts of data must be prepared. This data often comes from diverse sources like websites, PDFs, and news articles, and must undergo several preprocessing steps. These steps include filtering out irrelevant HTML code, removing duplicates, and screening for abusive content. These tasks, though critical, are not constrained by the availability of GPUs.

Petros Zerfos, IBM Research’s principal research scientist for watsonx data engineering, emphasized the importance of efficient data processing. “A large part of the time and effort that goes into training these models is preparing the data for these models,” Zerfos said. His team has been developing methods to enhance the efficiency of data processing pipelines, drawing expertise from various domains including natural language processing, distributed computing, and storage systems.

Leveraging CPU Capacity

Many steps in the data processing pipeline involve “embarrassingly parallel” computations, allowing each document to be processed independently. This parallel processing can significantly speed up data preparation by distributing tasks across numerous CPUs. However, some steps, such as removing duplicate documents, require access to the entire dataset, which cannot be performed in parallel.

To accelerate IBM’s Granite model development, the team has developed processes to rapidly provision and utilize tens of thousands of CPUs. This approach involves marshalling idle CPU capacity across IBM’s Cloud datacenter network, ensuring high communication bandwidth between CPUs and data storage. Traditional object storage systems often cause CPUs to idle due to low performance; thus, the team employed IBM’s high-performance Storage Scale file system to cache active data efficiently.

Scaling Up AI Training

Over the past year, IBM has scaled up to 100,000 vCPUs in the IBM Cloud, processing 14 petabytes of raw data to produce 40 trillion tokens for AI model training. The team has automated these data pipelines using Kubeflow on IBM Cloud. Their methods have proven to be 24 times faster in processing data from Common Crawl compared to previous techniques.

All of IBM’s open-sourced Granite code and language models have been trained using data prepared through these optimized pipelines. Additionally, IBM has made significant contributions to the AI community by developing the Data Prep Kit, a toolkit hosted on GitHub. This kit streamlines data preparation for large language model applications, supporting pre-training, fine-tuning, and retrieval-augmented generation (RAG) use cases. Built on distributed processing frameworks like Spark and Ray, the kit allows developers to build scalable custom modules.

For more information, visit the official IBM Research blog.

Image source: Shutterstock


Credit: Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Coinbase Unleashes 24/7 U.S. BTC & ETH Futures Post Deribit

May 9, 2025

AI Agents Boost Blockchain Gaming Growth

May 9, 2025

Prosecutors Deceived FTX Exec in Plea Deal

May 9, 2025
Leave A Reply Cancel Reply

What's New Here!

XRP Price Prediction For May 2025 As Bitcoin Price Hits $105000

May 11, 2025

Pi Network Nears $1: How to Buy and Sell Pi Coins

May 11, 2025

Altcoins And Meme Tokens Dominate Trending Crypto Searches This Week

May 11, 2025

Concerns over Trump’s conflict of interest are slowing the progress of broader crypto policy

May 11, 2025
AsiaTokenFund
Facebook X (Twitter) LinkedIn YouTube
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
© 2025 asiatokenfund.com - All Rights Reserved!

Type above and press Enter to search. Press Esc to cancel.

Ad Blocker Enabled!
Ad Blocker Enabled!
Our website is made possible by displaying online advertisements to our visitors. Please support us by disabling your Ad Blocker.