Close Menu
AsiaTokenFundAsiaTokenFund
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
What's Hot

Could the Bitwise Recovery Thesis Trigger A New ATH for ETH Price?

January 22, 2026

Why Is The Shiba Inu Price Crashing? The Billion-Dollar Move You Should Know About

January 22, 2026

Global Banking Battle: Who Wins Best Crypto to Buy for Payments This Year? Digitap ($TAP) vs. $2 XRP

January 22, 2026
Facebook X (Twitter) Instagram
Facebook X (Twitter) YouTube LinkedIn
AsiaTokenFundAsiaTokenFund
ATF Capital
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
AsiaTokenFundAsiaTokenFund

NVIDIA Enhances Data Privacy with Homomorphic Encryption for Federated XGBoost

0
By Aggregated - see source on December 19, 2024 Blockchain
Share
Facebook Twitter LinkedIn Pinterest Email


Timothy Morano
Dec 19, 2024 05:09

NVIDIA introduces CUDA-accelerated homomorphic encryption in Federated XGBoost, enhancing data privacy and efficiency in federated learning. This advancement addresses security concerns in both horizontal and vertical collaborations.





NVIDIA has unveiled a significant advancement in data privacy for federated learning by integrating CUDA-accelerated homomorphic encryption into Federated XGBoost. This development aims to address security concerns in both horizontal and vertical federated learning collaborations, according to NVIDIA.

Federated XGBoost and Its Applications

XGBoost, a widely used machine learning algorithm for tabular data modeling, has been extended by NVIDIA to support multisite collaborative training through Federated XGBoost. This plugin enables the model to operate across decentralized data sources in both horizontal and vertical settings. In vertical federated learning, parties hold different features of a dataset, while in horizontal settings, each party holds all features for a subset of the population.

NVIDIA FLARE, an open-source SDK, supports this federated learning framework by managing communication challenges and ensuring seamless operation across various network conditions. Federated XGBoost operates under an assumption of full mutual trust, but NVIDIA acknowledges that in practice, participants may attempt to glean additional information from the data, necessitating enhanced security measures.

Security Enhancements with Homomorphic Encryption

To mitigate potential data leaks, NVIDIA has integrated homomorphic encryption (HE) into Federated XGBoost. This encryption ensures that data remains secure during computation, addressing the ‘honest-but-curious’ threat model where participants may try to infer sensitive information. The integration includes both CPU-based and CUDA-accelerated HE plugins, with the latter offering significant speed advantages over traditional solutions.

In vertical federated learning, the active party encrypts gradients before sharing them with passive parties, ensuring that sensitive label information is protected. In horizontal learning, local histograms are encrypted before aggregation, preventing the server or other clients from accessing raw data.

Efficiency and Performance Gains

NVIDIA’s CUDA-accelerated HE offers up to 30x speed improvements for vertical XGBoost compared to existing third-party solutions. This performance boost is crucial for applications with high data security needs, such as financial fraud detection.

Benchmarks conducted by NVIDIA demonstrate the robustness and efficiency of their solution across various datasets, highlighting substantial performance improvements. These results underscore the potential for GPU-accelerated encryption to transform data privacy standards in federated learning.

Conclusion

The integration of homomorphic encryption into Federated XGBoost marks a significant step forward in secure federated learning. By providing a robust and efficient solution, NVIDIA addresses the dual challenges of data privacy and computational efficiency, paving the way for broader adoption in industries requiring stringent data protection.

Image source: Shutterstock


Credit: Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Harvey AI Launches Firm Knowledge Tool for Legal Teams

January 22, 2026

AI Website Builders Hit $6.3B Market but Professionalism Gap Persists

January 22, 2026

Anthropic Report Shows Engineers Now Orchestrate AI Agents, Not Code

January 22, 2026
Leave A Reply Cancel Reply

What's New Here!

Could the Bitwise Recovery Thesis Trigger A New ATH for ETH Price?

January 22, 2026

Why Is The Shiba Inu Price Crashing? The Billion-Dollar Move You Should Know About

January 22, 2026

Global Banking Battle: Who Wins Best Crypto to Buy for Payments This Year? Digitap ($TAP) vs. $2 XRP

January 22, 2026

Harvey AI Launches Firm Knowledge Tool for Legal Teams

January 22, 2026
AsiaTokenFund
Facebook X (Twitter) LinkedIn YouTube
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
© 2026 asiatokenfund.com - All Rights Reserved!

Type above and press Enter to search. Press Esc to cancel.

Ad Blocker Enabled!
Ad Blocker Enabled!
Our website is made possible by displaying online advertisements to our visitors. Please support us by disabling your Ad Blocker.