Close Menu
AsiaTokenFundAsiaTokenFund
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
What's Hot

Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30%

December 10, 2025

Dogecoin Stabilizes Above Key Support as Adoption Rises and Long-Term Outlook Strengthens

December 10, 2025

Crucial Barrier Signalling A Potential SOL Pullback To $130, Holders Look To Remittix As The New Growth Prospect

December 9, 2025
Facebook X (Twitter) Instagram
Facebook X (Twitter) YouTube LinkedIn
AsiaTokenFundAsiaTokenFund
ATF Capital
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
AsiaTokenFundAsiaTokenFund

Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30%

0
By Aggregated - see source on December 10, 2025 Blockchain
Share
Facebook Twitter LinkedIn Pinterest Email

Iris Coleman
Dec 10, 2025 01:06

Ray’s innovative disaggregated hybrid parallelism significantly enhances multimodal AI training efficiency, achieving up to 1.37x throughput improvement and overcoming memory challenges.

In a significant advancement for artificial intelligence training, Ray has introduced a disaggregated hybrid parallelism approach that accelerates the training of multimodal AI models by 30%, according to Anyscale. This development addresses the complexities and computational challenges of training models that process diverse data types such as text, images, and audio.

Challenges in Multimodal AI Training

Multimodal AI models, unlike traditional homogeneous large language models, consist of specialized modules with varying computational and memory needs. Vision-Language Models (VLMs), for example, integrate a vision encoder with a large language model (LLM). This integration results in architectural complexities, particularly when dealing with high-resolution images and long sequences. Traditional techniques like tensor parallelism and DeepSpeed ZeRO3 often fall short, resulting in inefficiencies and potential out-of-memory errors.

Ray’s Innovative Approach

Ray’s disaggregated hybrid parallelism leverages the flexibility of its universal framework, enabling tailored parallelization strategies for each module within a multimodal model. By utilizing Ray’s actor-based architecture, developers can allocate resources independently, optimizing for the unique requirements of each module. This results in a more efficient orchestration of complex workloads, as demonstrated with the Qwen-VL 32B model.

Benchmarking and Performance

In tests conducted with the Qwen-VL 32B model, Ray’s approach showed up to a 1.37x improvement in throughput compared to traditional methods. The strategy combined sequence parallelism for the vision encoder with tensor parallelism for the LLM, effectively managing memory and computational demands across different modules. This method not only improved speed but also enabled the training of sequences up to 65,000 tokens long, surpassing the capabilities of DeepSpeed ZeRO3 which encountered memory issues at 16,000 tokens.

Future Prospects

The success of Ray’s disaggregated hybrid parallelism in enhancing AI training efficiency paves the way for its application across larger GPU clusters and diverse hardware setups. Its ability to adapt to various multimodal architectures highlights its potential for broader implementation in AI development.

For those interested in exploring this innovative approach, Ray’s implementation is available for experimentation and feedback on their GitHub repository.

Image source: Shutterstock


Credit: Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Why AGI May Choose Bitcoin Over Dollars for the Unbanked

December 9, 2025

The Sandbox Expands with Corners: A New Web3 Platform in Beta

December 9, 2025

Standard Chartered-Backed Libeara Launches Tokenized Gold Fund in Singapore

December 9, 2025
Leave A Reply Cancel Reply

What's New Here!

Ray’s Disaggregated Hybrid Parallelism Boosts Multimodal AI Training by 30%

December 10, 2025

Dogecoin Stabilizes Above Key Support as Adoption Rises and Long-Term Outlook Strengthens

December 10, 2025

Crucial Barrier Signalling A Potential SOL Pullback To $130, Holders Look To Remittix As The New Growth Prospect

December 9, 2025

US government holds Zcash

December 9, 2025
AsiaTokenFund
Facebook X (Twitter) LinkedIn YouTube
  • Home
  • Crypto News
    • Bitcoin
    • Altcoin
  • Web3
    • Blockchain
  • Trading
  • Regulations
    • Scams
  • Submit Article
  • Contact Us
  • Terms of Use
    • Privacy Policy
    • DMCA
© 2025 asiatokenfund.com - All Rights Reserved!

Type above and press Enter to search. Press Esc to cancel.

Ad Blocker Enabled!
Ad Blocker Enabled!
Our website is made possible by displaying online advertisements to our visitors. Please support us by disabling your Ad Blocker.